Ursolic acid is found widely among representatives of the family Rosaceae [1-4]. We have studied the plant Agrimonia asiatica Juz., which belongs to this family. In a qualitative investigation for the presence of ursolic acid we used D. Bocharova's method [2]. Ursolic acid was found to be present in all organs. For its quantitative determination we took raw material which had previously been dried for 2 h and exhaustively extracted with petroleum ether to remove ballast substances and then with diethyl ether. The ethereal extract was concentrated to half volume and treated with 30 ml of a 15% solution of caustic potash (three times).

The combined alkaline fractions were acidified with 50% sulfuric acid and shaken with 50 ml of ether three times. After elimination of the extractant, a white microcrystalline substance was obtained which gave positive Liebermann-Burchard and Sal'kovskii reactions, and this was recrystallized from ethanol and weighed [5, 6].

The dynamics of the accumulation of ursolic acid in the individual organs of Agrimonia asiatica can be judged from the figures in the table (% on the absolutely dry weight).

Then the substance isolated was investigated chromatographically. On paper chromatography (using German medium paper, FN-3) the R_f values of the substance were 0.36 [benzene-toluene (1:4) system], 0.90 [butan-1-ol-acetic acid-water (4:1:2.2) system], and 0.96 [petroleum ether-chloroform-acetic acid (100:40:4) system] [7]. We also used thin-layer chromatography on plates. The substance was chromatographed in a fixed layer of alumina (5% of gypsum), in the 1% of acetic acid in benzene system (R_f 0.33), and in the methanol-acetone-carbon tetrachloride (20:20:75) system, R_f 0.43.

For further confirmation of the nature of the substance obtained, its melting point was determined (282-284°C, from ethanol), and a mixed melting point with an authentic sample was recorded, which showed its identity as ursolic acid.

Т	AΒ	$_{ m LE}$	1
---	----	------------	---

Part of	Phase of development				
	before flowering	flowering	ripeness	full ripe- ness of the fruit	
Roots	0,21	0,34	0,46	0,17	
Rhizomes Stems Leaves Fruit	0,61 0,42 0,17	0,82 0,61 0,19	1,18 0,58 0,15 0,07	0,34 0,38 0,13 0,02	

LITERATURE CITED

- 1. V. D. Ponomarev, "Qualitative reactions for glycyrrhizic and glycyrrhetic acids," Uch. Zap. Pyatigorskogo Farm. Instituta, 5, 227 (1961).
- 2. D. A. Bocharova, Rast. Res., 2, No. 4, 516 (1966).
- 3. V. G. Bukharov, V. V. Karlin, and V. A. Talan, Khim. Prirodn. Soedin., 17 (1967).

Tashkent Pharmaceutical Institute. Translated from Khimiya Prirodnykh Soedinenii, No. 3, pp. 394-395, May-June, 1972. Original article submitted January 29, 1972.

• 1974 Consultants Bureau, a division of Plenum Publishing Corporation, 227 West 17th Street, New York, N. Y. 10011. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written permission of the publisher. A copy of this article is available from the publisher for \$15.00.

- 4. C. H. Brieskorn, "Eigenschaften und Verbreitung einiger im pflanzenreich Vorkommender pentacyclischer Triterpene," Pharm. Zentralh., 95, 6 (1956).
- 5. C. Brieskorn and H. Herrig, "Der Chemismus des Farbreaktion nach Liebermann-Burchard bei Sterinen und Triterpenen sowie ihren Estern," Arch. Pharm., 292/64, No. 10, 485-495 (1959).
- 6. K. Bauer, Die Organische Analyse, Akadverlagsges. Geest und Portig KG, Leipzig (1950).
- 7. Z. Jung, "Steroid glycosides and their aglycones," in: Paper Chromatography, I. Hais and K. Macek, (editors) 3rd ed., Academic Press, New York (1963).
- 8. É. T. Oganesyan, Rast. Res., 2, No. 4, 516 (1966).